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Abstract
The manifold of Symmetric Positive Definite
(SPD) matrices has been successfully used for
data representation in image set classification.
By endowing the SPD manifold with Log-
Euclidean Metric, existing methods typically
work on vector-forms of SPD matrix logarithms.
This however not only inevitably distorts the ge-
ometrical structure of the space of SPD matrix
logarithms but also brings low efficiency espe-
cially when the dimensionality of SPD matrix is
high. To overcome this limitation, we propose a
novel metric learning approach to work directly
on logarithms of SPD matrices. Specifically, our
method aims to learn a tangent map that can di-
rectly transform the matrix logarithms from the
original tangent space to a new tangent space of
more discriminability. Under the tangent map
framework, the novel metric learning can then be
formulated as an optimization problem of seek-
ing a Mahalanobis-like matrix, which can take
the advantage of traditional metric learning tech-
niques. Extensive evaluations on several image
set classification tasks demonstrate the effective-
ness of our proposed metric learning method.

1. Introduction
Over the years, a surge of methods (Wang et al., 2008;
Wang & Chen, 2009; Cevikalp & Triggs, 2010; Hu et al.,
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2011; Harandi et al., 2011; Wang et al., 2012; Yang et al.,
2013; Zhu et al., 2013; Lu et al., 2013; 2014; Hayat et al.,
2014; Mahmood et al., 2014; Huang et al., 2015b; Wang
et al., 2015) have been suggested for the problem of image
set classification, where each sample either for training or
for testing refers to a set of image instances. In contrast to
a single image, a set of images provide more information
to describe subjects of interest. However, large intra-set
and/or inter-set variations pose great challenges for the im-
age set classification tasks.

In the existing literature, with strong ability to character-
ize variations, Symmetric Positive Definite (SPD) matrices
have been proven to provide powerful representations for
image sets. One typical instance of SPD matrix is covari-
ance matrix, which is employed by several works (Wang
et al., 2012; Vemulapalli et al., 2013; Lu et al., 2013; Huang
et al., 2014; 2015a) to present the second-order statistics of
the set of images. Another type of SPD matrix is the result-
ing matrix of Gaussian distribution, which is exploited by a
few works (Shakhnarovich et al., 2002; Arandjelović et al.,
2005; Huang et al., 2015b; Wang et al., 2015) to capture
the entire probabilistic model of object variations for more
robust image set classification. By employing information
geometry theory (Amari & Nagaoka, 2000; Lovrić et al.,
2000), the two works (Huang et al., 2015b; Wang et al.,
2015) transform the Gaussian model to an SPD matrix as a
compact and effective representation for image set.

However, such advantages come along with the challenge
of representing and handling the SPD matrices appropriate-
ly. As studied in (Arsigny et al., 2005; Pennec et al., 2006;
Arsigny et al., 2007; Sra, 2012), SPD matrices do not lie in
a vector space but instead on a specific Riemannian mani-
fold. Therefore, previous metrics defined or learned based
on Euclidean structure are no longer adequate (if not in-



Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold

valid), due to their neglecting the manifold geometry. Fur-
thermore, they even lead to several undesirable effects such
as the swelling of diffusion tensors and the asymmetry after
inversion in the case of SPD matrices (Arsigny et al., 2006;
Pennec et al., 2006).

To circumvent these problems, some Riemannian metrics
are proposed on the SPD manifold. For instance, with the
Affine-Invariant Metric (AIM) proposed in (Pennec et al.,
2006), the swelling effect has disappeared and the symme-
try with respect to inversion is respected. However, the
price paid for its success is a high computational burden
in practice (Arsigny et al., 2007). Later, a new Rieman-
nian metric named Log-Euclidean Metric (LEM) is intro-
duced by giving the space of SPD matrices a Lie group
structure (Arsigny et al., 2006; 2007). This Riemannian
metric equips the SPD manifold with the bi-invariant met-
ric induced by Lie group to reduce the manifold to a flat
Riemannian space. In this space, classical Euclidean com-
putations can be applied to the domain of SPD matrix log-
arithms (i.e., the tangent space at identity matrix on SPD
manifold). Therefore, LEM fully overcomes the computa-
tional limitations of the AIM framework, while conserving
excellent theoretical properties.

By employing the well-studied LEM, quite a few works
(Sivalingam et al., 2009; Tosato et al., 2010; Wang et al.,
2012; Carreira et al., 2012; Jayasumana et al., 2013; Vemu-
lapalli et al., 2013; Li et al., 2013; Minh et al., 2014; Vem-
ulapalli & Jacobs, 2015) proposed a series of methods to
learn discriminant function for SPD matrices. For exam-
ple, several works (Sivalingam et al., 2009; Tosato et al.,
2010; Carreira et al., 2012; Vemulapalli & Jacobs, 2015)
first apply LEM to convert each SPD matrix logarithm of
size d×d into a vector of size d(d+1)

2 in the tangent space at
the identity matrix, and then learn more discriminant vec-
tors of size l in this tangent space (see Fig. 1 (a)-(b1)-(c)).
Another family of works (Wang et al., 2012; Jayasumana
et al., 2013; Vemulapalli et al., 2013; Li et al., 2013; Min-
h et al., 2014) derive LEM based kernel functions in order
to embed the Riemannian manifold of SPD matrices into
a high-dimensional Hilbert space. Actually, this kind of
methods also first converts the matrix logarithms of size
d × d into a vector of size d2 in the tangent space at the
identity matrix and then learns more discriminant vectors
of size l (see Fig. 1 (a)-(b2)-(c)). Obviously, these two
schemes of handling SPD matrix logarithms are not perfect,
because the basic elements are symmetric matrices, but not
usual matrices. Therefore, in these methods, the vector op-
eration of the matrix logarithms will inevitably distort the
intrinsic geometrical structure of the tangent space.

In this paper, we develop a novel metric learning method
on the SPD manifold. Unlike existing methods that gener-
ally unfold SPD matrix logarithms to vectors, our method
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Figure 1. Different schemes to handle the SPD matrix logarith-
m under Log-Euclidean Metric (LEM) framework. Most of the
traditional methods commonly first convert the original (d × d)-
dimensional (here d = 3) matrix logarithm (a) into a d(d+1)

2
-

dimensional vector (b1) or d2-dimensional vector (b2) and final-
ly learn an l-dimensional (here l = 4) vector representation (c).
In contrast, the proposed method works directly on the original
(d × d)-dimensional matrix logarithm (d) and learns a discrimi-
native (k × k)-dimensional (here k = 2) matrix logarithm (e).

works directly on the original (d × d)-dimensional SPD
matrix logarithms and finally learns a discriminant (k×k)-
dimensional symmetric matrix (which can be thought of
SPD matrix logarithms) under the LEM framework (see
Fig .1 (d)-(e)). By performing metric learning in this
scheme, our proposed method has two important advan-
tages over the traditional ones. First, our learned mapping
from the original tangent space to a new discriminant space
of learned SPD matrix logarithms will more faithfully re-
spect the geometrical structure of the original tangent space
and thus benefit from its useful properties. Additionally,
keeping the symmetry of the learned square matrix will al-
so obtain the corresponding manifold of SPD matrices via
the inverse mapping (i.e. the matrix exponential) of the
matrix logarithm which is a smooth diffeomorphism (Ar-
signy et al., 2007). Second, learning discriminant function
on square matrices is more efficient than learning on da-
ta vectors. To understand this point, one can take PCA
and 2DPCA (Yang et al., 2004) as an analogy. In previ-
ous methods, the (within and between class) scatter matrix
of vectorized SPD matrix logarithm is of size d2 × d2 or
d(d+1)

2 × d(d+1)
2 , while ours is much smaller, only d × d.

Therefore, it is easier to evaluate the scatter matrix of the
logarithms of SPD matrices accurately, and thus more effi-
cient to perform learning on the smaller scatter matrix.

With this idea in mind, we formulate the new metric
learning on the SPD manifold as a problem of learn-
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ing Mahalanobis-like matrix, which inherits the favorable
properties of the traditional metric learning methods devel-
oped for vector space. Specifically, the main contribution
of this work is threefold:

• To overcome the limitation of traditional methods that
rely on the intermediate vectorization of SPD matrix
logarithm, we develop a novel Log-Euclidean Metric
Learning (LEML) framework to directly manipulate
the original SPD matrix logarithm.

• To learn a more discriminant metric on SPD mani-
fold, we propose a LogDet divergence based objective
function by extending the metric learning machinery
(Davis et al., 2007) from the vector-form version to
the matrix-form version.

• To optimize this objective function, we exploit cyclic
Bregman projections (Kulis et al., 2009) by design-
ing an update rule that is best tailored to preserve the
original SPD tangent space structure.

2. Background
In this section, we first introduce the Riemannian manifold
of SPD matrices, and then review the Log-Euclidean Met-
ric on the SPD manifold.

2.1. The Manifold of SPD Matrices

As studied in (Arsigny et al., 2005; Pennec et al., 2006;
Arsigny et al., 2007), the space of d × d SPD matrices,
when endowed with an appropriate Riemannian metric,
forms a specific type of Riemannian manifold, i.e., SPD
manifold Sd+. The SPD manifold is a topological space
locally similar to Euclidean space and with globally de-
fined differential structure, which leads the possibility to
define the derivatives of the curves on the manifold. By us-
ing the logarithm map logS1

: Sd+ → TS1Sd+(S1 ∈ Sd+),
the derivatives at the point S1 on the manifold lie in a
tangent space TS1

Sd+, which has an inner product 〈, 〉S1
.

The family of inner products on all tangent spaces is known
as the Riemannian metric of the manifold. With the Rie-
mannian metric, the geodesic distance between two points
S1,S2 on the SPD manifold is generally measured by
〈logS1

(S2), logS1
(S2)〉S1

.

Arising from a smoothly varying inner product, the two
mostly widely used Riemannian metrics on the SPD man-
ifold, i.e., Affine-Invariant Metric (AIM) (Pennec et al.,
2006) and Log-Euclidean Metric (LEM) (Arsigny et al.,
2007), are qualified to derive true geodesic on the SPD
manifold. Due to the curvature of the SPD manifold, the
computational cost of AIM is too expensive to work in
practice (Arsigny et al., 2007). In contrast, LEM only needs
Euclidean computations in the domain of matrix logarithms

and thus results in a drastic reduction in computation time.
Therefore, in this paper, we focus on studying LEM on the
manifold of SPD matrices.

2.2. Log-Euclidean Metric on SPD Manifold

In the study (Arsigny et al., 2007), Log-Euclidean Met-
ric (LEM) for the SPD manifold Sd+ is derived by ex-
ploiting the Lie group structure under the group operation
S1 � S2 := exp(log(S1) + log(S2)) for S1,S2 ∈ Sd+
where exp(·) and log(·) denote the usual matrix exponen-
tial and logarithm operators.

LEM on the Lie group of SPD matrices corresponds to a
Euclidean metric in the SPD matrix logarithmic domain.
With LEM on Sd+, the scalar product between two elements
T1,T2 in the tangent space at a point S is given by:

〈T1,T2〉S = 〈DS log .T1, DS log .T2〉. (1)

where DS log .T indicates the directional derivative of the
matrix logarithm at S along T . The logarithmic and expo-
nential maps associated with the metric can be expressed in
terms of matrix logarithms and exponential:

logS1
(S2) = Dlog(S1) exp .(log(S2)− log(S1)),

expS1
(T2) = exp(log(S1) +DS1

log .T2)).
(2)

where Dlog(S) exp . = (DS log .)−1 is yielded by the dif-
ferentiation of the equality log ◦ exp = I , and here I is the
identity matrix. For more details on the derivation of Eq.1
and Eq.2, please kindly refer to (Arsigny et al., 2007).

From Eq.1 and Eq.2, the geodesic distance between two
SPD matrices is achieved by LEM:

D`e(S1,S2) = 〈logS1
(S2), logS1

(S2)〉S1

= ‖ log(S1)− log(S2)‖2F .
(3)

which corresponds to a Euclidean distance in the logarith-
mic domain, i.e. the tangent space at identity matrix. In
other words, under the LEM framework, the distance be-
tween any two points on the SPD manifold is obtained by
propagating by translation the scalar product in the tangent
space at identity matrix. Therefore, endowed with this met-
ric, the space of SPD matrices is reduced to a flat Rieman-
nian space (Arsigny et al., 2007).

3. Log-Euclidean Metric Learning on SPD
Manifold

In this section, we describe our proposed Log-Euclidean
Metric Learning (LEML) framework. Specifically, we first
introduce the tangent map from the original tangent space
to a more discriminative one, and then present the new met-
ric learning problem on the SPD manifold. To solve this
new paradigm, an optimization is finally derived.
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Figure 2. Conceptual illustration of the proposed Log-Euclidean
Metric Learning (LEML) on the SPD manifold. To directly ma-
nipulate the SPD matrix logarithm, LEML learns a tangent map
DF (S) : TSSd

+ → TF (S)Sk
+ from the original tangent space

TSSd
+ to a more discriminative tangent space TF (S)Sk

+. With this
mapping, the corresponding manifold map F : Sd

+ → Sk
+ from

the original SPD manifold Sd
+ to the target SPD manifold Sk

+ can
be derived. Here, ξS is the tangent vector at a point S of Sd

+, γ is
any curve that realizes ξS .

3.1. Tangent Map

Suppose a group of SPD matrices have been comput-
ed from the image set data. We denote them as S =
{S1, . . . ,Sn}, where Si ∈ Sd+ with class label li (i.e. the
category of the corresponding image set). Let F : Sd+ →
Sk+ be a smooth mapping from the original SPD manifold
Sd+ to a new one Sk+ (k ≤ d), and ξS denote the tangent
vector at a point S on Sd+. Then, on the new manifold Sk+,
the tangent vector DF (S)[ξS ] is realized by F ◦ γ, where
γ is any curve that realizes ξS . As shown in Fig.2, the
mapping

DF (S) : TSS+d → TF (S)S+k : ξ 7→ DF (S)[ξS ]. (4)

is a linear transformation called tangent map (or differen-
tial map) of F at S, TSSd+ is the tangent space of Sd+ at
point S. As indicated in (Absil et al., 2008) , if and on-
ly if the tangent map DF (S) : TSSd+ → TF (S)Sk+ is an
injection (respectively, surjection) for every S ∈ Sd+, then
the mapping F : Sd+ → Sk+ from manifold to manifold
is an immersion, i.e., a smooth map whose differential is
everywhere injective.

As shown in Eq.3, when equipping the SPD manifold with
Log-Euclidean Metric (LEM), the geodesic distance be-
tween two SPD matrices Si,Sj can be reduced to the Eu-
clidean distance between their matrix logarithms in the
tangent space at identity matrix. Consequently, the LEM
framework is very compatible with the mathematical prop-
erty of tangent map. With this in mind, in this paper, we
focus on learning the tangent map DF (S) : TSSd+ →
TF (S)Sk+ which is an injection and thus is eligible to derive
the original map F : Sd+ → Sk+. Thus, we attempt to define
the tangent map by seeking a transformation W ∈ Rd×k

for the SPD matrix logarithms in the tangent space at iden-

tity matrix, which is defined as:

f(log(S)) =W T log(S)W . (5)

To ensure that the resulting space is a tangent space on
the new manifold Sk+, we require W to have column full
rank (i.e., rank(W ) = k) such that W T log(S)W is
a real, symmetric matrix, and thus forms a valid tangent
space (i.e., the space of SPD matrix logarithms). Obvious-
ly, the tangent mapping f is an injection, and can derive the
manifold-manifold mapping F : Sd+ → Sk+.

In contrast to the proposed tangent map framework which
directly works on the original SPD matrix logarithm, most
traditional LEM-based methods (Sivalingam et al., 2009;
Wang et al., 2012; Carreira et al., 2012; Li et al., 2013;
Vemulapalli & Jacobs, 2015) first convert the SPD ma-
trix logarithms into vectors of size d(d+1)

2 , and then learn
a map from the vector space to another one for getting l-
dimensional vectors. In fact, their learning procedure can
also yield a space of symmetric matrices with the finally
learned vectors only when satisfying the constraint that the
dimensionality l should be the form of k(k+1)

2 (e.g., l=3,
then k=2). Therefore, these methods do not always result
in a valid tangent space, and thus cannot benefit from useful
properties of the tangent space to learn a desirable map.

To our knowledge, there are only three similar works (Jung
et al., 2012; Harandi et al., 2014; Huang et al., 2015c) seek-
ing to learn the mapping from manifold to manifold. How-
ever, the work (Jung et al., 2012) and our previous work
(Huang et al., 2015c) learn the manifold-manifold map-
ping on another class of Riemannian manifold (i.e., sphere
or Grassmann manifold). The other work (Harandi et al.,
2014) employs two different types of metrics, i.e., Affine-
Invariant Metric (AIM) (Pennec et al., 2006) and Stein di-
vergence (Sra, 2012), to learn an embedding of a high-
dimensional SPD manifold into another low-dimensional
one. In their work, the price paid for the success of employ-
ing AIM is a high computational burden in practice, while
Stein divergence fails to define true geodesics on SPD man-
ifold (Jayasumana et al., 2013). In addition, different from
the two works (Jung et al., 2012; Harandi et al., 2014) aim-
ing to learn a transformation for dimensionality reduction,
both our prior work (Huang et al., 2015c) and this current
work alternatively learn a Mahalanobis-like matrix, which
inherits the appealing properties of the traditional metric
learning methods without enforcing explicit constraints for
reducing the dimensionality of the original data.

3.2. Metric Learning

As discussed above, with the designed injective tangent
map, a new SPD manifold Sk+ can be derived. Under
the LEM framework, the geodesic distance between the
transformed data on the new resulting SPD manifold Sk+
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is achieved by (here, we denote T = log(S) for simplicity
and use the property that the trace is invariant under cyclic
permutations):

DW
`e (Ti,Tj) = ‖W TTiW −W TTjW ‖2F

= tr((Ti − Tj)
TP (Ti − Tj)P ).

(6)

where P = WW T is a rank-k symmetric positive
semidefinite (PSD) matrix of size d × d. Since both P
and (Ti − Tj) are symmetric, any permutation in the trace
is allowed and we then rewrite Eq.6 as:

DQ
`e(Ti,Tj) = tr(Q(Ti − Tj)(Ti − Tj)). (7)

where Q = PP . If P is decomposed by SVD as P =
UΛUT , then Q = UΛ2UT is thus also a rank-k PSD
matrix of size d × d, which takes a similar form as Ma-
halanobis matrix. Note that, in practical applications, we
often set k = d for initializingQ as an identity matrix.

If we regard the form of (Ti − Tj)(Ti − Tj) in Eq.7 as
a pair-wise computation of scatter matrix, we see that this
matrix is of size d× d. In contrast, the traditional methods
(e.g., (Vemulapalli & Jacobs, 2015)) typically transform
the SPD matrix logarithms Ti into vectors of size d(d+1)

2 or
d2. Consequently, their computed scatter matrix is of size
d(d+1)

2 × d(d+1)
2 or d2×d2, which is much bigger than ours

in Eq.7 leading more difficulties to perform robust metric
learning in the higher-dimensional space.

In this paper, we are focusing on the classification tasks on
the SPD manifold. Like traditional metric learning method-
ology, we assume that prior knowledge is known regard-
ing the distances between pairs of points on the new SPD
manifold Sk+. Let’s consider the relationships constraining
the similarity or dissimilarity between pairs of points: two
points are similar if the geodesic distance between them on
the new manifold is smaller than a given upper bound, i.e.,
DQ

`e(Ti,Tj) ≤ u for a relatively small value of u. Sim-
ilarly, two points are dissimilar if DQ

`e(Ti,Tj) ≥ l for a
sufficiently large value of l.

Given a set of interpoint distance constraints as described
above, our problem is to learn a PSD matrixQ that param-
eterizes the corresponding Log-Euclidean distance on the
new manifold Sk+. Inspired by the work (Davis et al., 2007)
developed for Mahalanobis distance in Euclidean space, we
exploit the LogDet divergence D`d to formulate our ob-
jective function on the SPD manifold considering its good
properties (e.g., fixing the rank) for PSD matrices (Davis
et al., 2007; Kulis et al., 2009):

min
Q�0,ξ

D`d(Q,Q0) + ηD`d(diag(ξ), diag(ξ0)),

s.t. δijDQ
`e(Ti,Tj) ≤ ξij ,∀c(i, j).

(8)

whereQ0 ∈ Rd×d is an initialization ofQ, D`d(Q,Q0) =
tr(QQ−10 ) − logdet(QQ−10 ) − d, d is the dimensional-

ity of the data sample on the original SPD manifold Sd+.
DQ

`e(Ti,Tj) is the distance between two samples in the
new tangent space of the generated manifold, which can be
computed by Eq.7. c(i, j) denotes the index of the (i, j)-th
constraint involving the two samples Ti,Tj in the tangent
space. δij = 1 if the pair of samples for c(i, j) come from
the same class, otherwise δij = −1. ξij is a vector of slack
variables and is initialized to δijρ − ζτ , ρ is the threshold
for distance comparison, τ is the margin, ζ is the tuning
scale of the margin. In practice, ρ and τ are respectively set
as mean and standard deviation of distances of the original
training sample pairs. So, there are only two parameters η
and ζ that actually need to tune and can be both commonly
optimized in a small range.

3.3. Optimization

To solve the optimization problem in Eq.8, we adopt
the cyclic Bregman projection algorithm (Bregman, 1967;
Censor & Zenios, 1997), which is to choose one con-
straint per iteration, and perform a projection so that the
current solution satisfies the chosen constraint. In the
case of inequality constraints, appropriate corrections of
ξij and Q are also enforced. This process is then re-
peated by cycling through the constraints. Specifically,
by introducing the dual variable αij to Eq.8 and using
Eq.7, we form the Lagrangian L = D`d(Q

t+1,Qt) +
ηD`d(diag(ξ

t+1), diag(ξt))+αij(δijtr(Q
t+1A)−ξt+1

ij ),
where A = (Ti − Tj)(Ti − Tj). To apply the Bregman
projection to the LogDet divergence, we set the gradient of
the Lagrangian w.r.t. αij , ξij and Q to zero and get the
following update equations for them:

0 = δijtr(Q
t+1A)− ξt+1

ij . (9)

ξt+1
ij =

ηξtij
η + δijαijξtij

. (10)

Qt+1 = Vt((V
T
t Q

tVt)
−1 − δijαij(V

T
t AVt))

−1
V T
t .
(11)

where the eigen-decomposition of Qt is V T
t ΛtVt, Ti =

log(Si),Tj = log(Sj) ∈ TISd+ are the constrained data
points in the tangent space at identity matrix.

As given in Eq.11, the projection update rule for the learned
PSD matrix Q is with a constraint matrix A = (Ti −
Tj)(Ti−Tj), where Ti,Tj are symmetric matrices. In con-
trast, in the works (Davis et al., 2007; Kulis et al., 2009), the
projection update rule for the learned PSD matrix is with a
rank-one constraint matrix, i.e.,A = (xi−xj)(xi−xj)

T ,
where xi,xj are vector-forms. However, following the
work (Kulis et al., 2009), we can also apply the Shermann-
Morrison inverse formula (Sherman & Morrison, 1950;
Golub et al., 2012), i.e., (B+uvT )−1 = B−1−B−1uvTB−1

1+vTB−1u
to the projection update Eq.11 and finally get a similar ex-
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Algorithm 1 Log-Euclidean Metric Learning (LEML)
Input: Training data {T1,T2, . . . ,Tn},Ti ∈ TISd+, con-
straints c(i, j) with δij ∈ ±1, slack parameter η, input PSD
matrix Q0, distance threshold ρ, margin parameter τ and
tuning scale ζ.
1. t← 1,Q1 ← Q0, ξij ← δijρ− ζτ,λij ← 0,∀c(i, j).
2. Repeat
3. Update the dual variable αij using Eq.13 and Eq.14.
4. Update the vector of slack variables ξt+1

ij using Eq.10.
5. Update the PSD matrixQt+1 using Eq.12.
6. Until convergence
Output: PSD matrixQ.

pression forQt+1:

Qt+1 = Qt +
δijαijQ

tAQt

1−αijtr(QtA)
. (12)

By substituting Eq.12 and Eq.10 into Eq.9, we can compute
αij in a closed form as:

αij =
δijη

η + 1
(

1

tr(QtA)
− 1

ξtij
). (13)

As Eq.8 contains an inequality constraint, we use λij ≥
0 as the corresponding dual variable. To maintain non-
negativity of the dual variable (which is necessary for sat-
isfying the KKT conditions), we solve Eq.8 by continually
updating α after using Eq.13 as:

αij ← min(αij ,λij), λij ← λij −αij . (14)

The resulting optimization procedure is formulated as Al-
gorithm 1. The inputs to the algorithm are the training data
with the constrains, the starting PSD matrix Q0, the slack
parameter η, distance threshold ρ, margin parameter τ and
tuning scale ζ. As noted in (Davis et al., 2007; Kulis et al.,
2009), this kind of method of cyclic Bregman projections
is guaranteed to converge to the globally optimal solution.
The main time cost of this algorithm is to update Qt+1 in
Eq.12, which is O(d2) (d is the dimensionality of the orig-
inal SPD manifold) for each constraint projection. There-
fore, the total time cost isO(Ld2) whereL is the total num-
ber of the updatingQt+1 in Step 5 in Algorithm 1.

4. Experiments
In this section, we study the effectiveness of the pro-
posed approach on three image set classification tasks: set-
based object categorization, video-based face recognition
and video-based face verification. These tasks are respec-
tively implemented on ETH-80 (Leibe & Schiele, 2003),
YouTube Celebrities (Kim et al., 2008) and YouTube Face
DB (Wolf et al., 2011) databases.

4.1. Databases and settings

ETH-80 (Leibe & Schiele, 2003) database has 80 image
sets of 8 object categories: apples, cows, cups, dogs, hors-
es, pears, tomatoes, and cars. Each category includes 10
different image sets, each of which has 41 images of an
object captured under different views. All the images are
resized into 20 × 20 intensity images. Following (Wang
et al., 2012; Vemulapalli et al., 2013), we randomly split
this dataset into ten different tests, where each category has
5 objects for gallery and the other 5 objects for probes.

YouTube Celebrities (YTC) (Kim et al., 2008) database
collects 1910 video sequences of 47 subjects from
YouTube. Most of them are highly compressed and low
resolution videos. The face region in each image is resized
into 20 × 20 intensity image, and histogram equalized to
eliminate lighting effects. Each video clip generates an im-
age set of faces. Following (Wang & Chen, 2009; Wang
et al., 2012; Vemulapalli et al., 2013), this dataset is ran-
domly split into the gallery and the probe, which have 3
image sets and 6 image sets respectively for each subject.
The process of random splitting was repeated ten times.

YouTube Face (YTF) (Wolf et al., 2011) database contains
3425 videos of 1595 different people downloaded from the
YouTube. The face frames in each video form an image set
and are often of large variations in pose, illumination, and
expression. The face images are directly cropped according
to the provided data and then resized into 24 × 40 pixels.
We extract the raw intensity feature of resized images. On
this dataset, we follow the standard protocol (Wolf et al.,
2011) for face verification with 5000 video pairs. These
pairs are equally divided into 10 folds, each of which has
250 intra-personal pairs and 250 inter-personal pairs. The
experiment is performed in the restricted training setting.

4.2. Evaluation

On the three used databases, we compute a single Gaussian
model N (m,S) (m ∈ Rd is mean, and S ∈ Sd+ is co-
variance matrix) for each image set, and then construct the
corresponding SPD features. Specifically, to avoid matrix
singularity, we added a small ridge δI to each covariance
matrixS, where δ = 10−3×tr(S) and I is the identity ma-
trix. Following our previous works (Huang et al., 2015b;
Wang et al., 2015) which employ information geometry
theory (Amari & Nagaoka, 2000; Lovrić et al., 2000), we
also transform the Gaussian modelN (m,S) into a (d+1)-

dimensional SPD matrix as |S|−
1

d+1

[
S +mmT m
mT 1

]
.

To more clearly understand the resulting SPD feature, we
take the YTC dataset for example. On this dataset, since
the image size is 20× 20, the calculated sample mean is of
size 400, the covariance matrix is of size 400 × 400, and
our finally used SPD matrix is of size 401× 401.
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Methods ETH-80 YTC YTF

AIM (Pennec et al., 2006) 87.50 ± 5.77 62.85 ± 3.46 59.28 ± 2.25
Stein (Sra, 2012) 88.00 ± 5.11 61.46 ± 3.53 58.70 ± 1.97
LEM (Arsigny et al., 2007) 89.25 ± 4.72 63.91 ± 3.25 61.48 ± 2.27

SPDML-AIM (Harandi et al., 2014) 90.75 ± 3.34 64.66 ± 2.92 62.16 ± 2.16
SPDML-Stein (Harandi et al., 2014) 90.50 ± 3.87 61.57 ± 3.43 62.56 ± 2.49
RSR (Harandi et al., 2012) 93.25 ± 3.34 72.77 ± 2.69 N/A

LEK-Kp (Li et al., 2013) 93.26 ± 4.42 61.85 ± 3.24 N/A
LEK-Ke (Li et al., 2013) 93.00 ± 3.69 62.17 ± 3.52 N/A
LEK-Kg (Li et al., 2013) 92.75 ± 3.43 56.30 ± 3.62 N/A
CDL-LDA (Wang et al., 2012) 93.75 ± 3.43 72.70 ± 2.93 66.76 ± 1.89
CDL-PLS (Wang et al., 2012) 93.50 ± 4.44 72.67 ± 2.47 N/A
ITML-LEM (Vemulapalli & Jacobs, 2015) 90.75 ± 4.72 66.51 ± 3.67 60.02 ± 1.84

DCC (Kim et al., 2007) 90.75 ± 4.42 65.48 ± 3.51 68.28 ± 2.21
GDA (Hamm & Lee, 2008) 92.25 ± 4.16 65.02 ± 2.91 66.76 ± 1.72
AHISD (Cevikalp & Triggs, 2010) 77.25 ± 7.50 63.70 ± 2.89 64.80 ± 1.54
CHISD (Cevikalp & Triggs, 2010) 74.25 ± 5.01 66.62 ± 2.79 66.30 ± 1.21
SSDML (Zhu et al., 2013) 80.00 ± 4.23 68.79 ± 2.45 65.38 ± 1.86

LEML 94.75 ± 2.49 70.53 ± 2.95 65.12 ± 1.54
LEML-CDL-LDA 94.25 ± 3.34 72.63 ± 2.49 72.34 ± 2.07
LEML-CDL-PLS 96.00 ± 2.11 73.31 ± 2.49 N/A

Table 1. Image set classification results of the state-of-the-art methods on ETH-80, YTC and YTF databases.

To fully evaluate our proposed approach, we compare three
categories of SPD-based methods and other state-of-the-art
image set classification methods which employ other types
of set models:

1. Basic metrics on SPD manifold:

Affine-Invariant Metric (AIM) (Pennec et al., 2006),
Stein divergence (Sra, 2012), Log-Euclidean Metric
(LEM) (Arsigny et al., 2007)

2. AIM and Stein based supervised methods:

SPD Manifold Leaning (SPDML-AIM, SPDML-
Stein) (Harandi et al., 2014), Riemannian Sparse Rep-
resentation (RSR) (Harandi et al., 2012)

3. LEM based supervised methods:

Log-Euclidean Kernel (LEK) (Li et al., 2013), Co-
variance Discriminative Learning (CDL) (Wang et al.,
2012), Information-Theoretic Metric Learning with
LEM (ITML-LEM) (Vemulapalli & Jacobs, 2015)

4. Other set model based methods:

Discriminant Canonical Correlations (DCC) (Kim
et al., 2007), Grassmann Discriminant Analysis
(GDA) (Hamm & Lee, 2008), Affine (Convex) Hull
based Image Set Distance (AHISD, CHISD) (Ce-
vikalp & Triggs, 2010), Set-to-Set Distance Metric
Learning (SSDML) (Zhu et al., 2013).

The parameters of the comparative methods are empirical-
ly tuned according to their original works: For RSR, we
tune the parameter β around the order of the mean dis-
tance and λ in the range of [0.0001, 0.001, 0.01, 0.1]. For
SPDML-AIM/SPDML-Stein, following the original work
(Harandi et al., 2014), vw is fixed as the minimum num-
ber of samples in one class while the dimensionality of the
target SPD manifold and vb are tuned by cross-validation.
For LEK, we compare its three versions, which are polyno-
mial kernel (LEK-Kp), exponential kernel (LEK-Ke) and
radial kernel (LEK-Kg) respectively. The parameter n in
LEK-Kp, LEK-Ke is tuned from 1 to 50, and β in LEK-Kg

is tuned by using the same strategy as RSR. The parame-
ter λ in LEK-Kp, LEK-Ke and LEK-Kg is tuned in the
range of [0.0001, 0.001, 0.01, 0.1]. For CDL, we imple-
ment both LDA-based and PLS-based versions by adopt-
ing the same setting as (Wang et al., 2012). For ITML-
LEM, we tune the parameters following the setting of the
original ITML (Davis et al., 2007). For AHISD, CHISD
and DCC, PCA is performed by preserving 95% energy to
learn the linear subspace and the first 10 maximum canon-
ical correlations are used. For GDA, the dimensionality
of Grassmann manifold is set to 10. For SSDML, we set
λ1 = 0.001, λ2 = 0.5, the numbers of positive and neg-
ative pairs per set are respectively set to 10 and 20. For
our proposed method LEML, the parameter η is tuned in
the range of [0.1, 1, 10], ζ is tuned from 0.1 to 0.5. To
perform the final classification, we employ sparse represen-
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tation based classifier for two sparse representation meth-
ods (i.e., RSR and LEK) and apply the nearest neighbor
classifier on the other methods.

Table 1 shows the average classification accuracy and stan-
dard deviation across the 10 random splits of each dataset.
For verification task on YTF, since RSR/LEK apply sparse
representation based classifier, and CDL-PLS adopts a re-
gression based classifier, they fail to work on this dataset
and thus we do not report their results on this dataset. For
DCC, GDA, CDL-LDA, we modify them by constructing
the within-class scatter matrix from intra-class pairs and the
between-class scatter matrix from inter-class pairs.

Firstly, we want to find the improvement of our proposed
metric learning approach LEML over the basic metrics on
SPD manifold. As can be seen in Table 1, on the three
datasets, the Riemannian metric LEM mostly outperforms
the other two metrics AIM and Stein, which shows AIM
and Stein are both inferior to LEM. Under the LEM frame-
work, our LEM-based metric learning method improves the
baseline performances by a large margin.

Secondly, compared with the state-of-the-art methods, our
proposed method LEML achieves at least comparable per-
formance with them and even outperform them in sever-
al cases on the three datasets. Among these results, we
especially care about the comparison between the related
works SPDML-AIM/SPDML-Stein and LEML. It can be
observed that our method significantly outperforms them,
which demonstrates the potential superiority of LEM based
metric learning framework over AIM and Stein based ones,
due to the inherent advantages of the basic metric LEM,
as advocated in (Wang et al., 2012; Jayasumana et al.,
2013). Furthermore, we would like to compare the ITML-
LEM and LEML, both of which employ the metric learn-
ing framework using the same basic metric LEM. The
comparisons between them show that ITML-LEM work-
ing on vector-form of SPD matrix logarithm is clearly out-
performed by our LEML directly working on the original
matrix-form. Two reasons can be adduced: 1) As discussed
in Sec.3.1, since LEML more faithfully respects the geom-
etry of the original tangent space, it can benefit from its
useful properties of the tangent space. 2) As mentioned in
Sec.3.2, LEML performs learning on much smaller scatter
matrix than ITML-LEM, and thus can learn more desirable
distance metric on the SPD manifold.

Lastly, since our method actually derives a new manifold
by decomposing the learned PSD matrix Q into a trans-
formation for dimensionality reduction, it can be readily
fed into other SPD based methods such as CDL. It is in-
teresting to find that LEML-CDL-LDA and LEML-CDL-
PLS favorably (especially on YTF) improve the original
versions. This demonstrates that our new metric learning
method is qualified to boost the classification performance

Methods Train Test

SPDML-AIM (Harandi et al., 2014) 15072.56 9.35
SPDML-Stein (Harandi et al., 2014) 108.50 0.04
ITML-LEM (Vemulapalli & Jacobs,

2015) 92007.13 0.02

LEML 56.30 0.02

Table 2. Computation time (seconds) of the related SPD-based
metric/manifold learning methods on YTC for training and testing
(classification of one video).

of other methods by employing it as a pre-processing step.

4.3. Time comparison

To show the efficiency of our proposed LEML, we finally
compare the training and testing time of the related SPD-
based manifold/metric learning methods on YTC using an
Intel(R) Core(TM) i7-37700M (3.40GHz) PC. The average
training time and testing time for each method is tabulated
in Table 2. Compared with ITML-LEM, our method has
significantly reduced the training burden, which again justi-
fies the superiority of our LEML working on matrices over
ITML-LEM working on vectors in terms of time efficiency.
While comparing with other methods, it is also observed
that our LEML performs much better than the competing
SPD manifold learning techniques SPDML-AIM/SPDML-
Stein when training.

5. Conclusion and Future Work
In this paper we have proposed a novel metric learning
framework on the SPD manifold for image set classifica-
tion. Different from most existing methods, our approach
seeks to learn the tangent map directly transforming the
SPD matrix logarithms (rather than a vector) from the tan-
gent space of the original SPD manifold to a new tangent
space. The extensive experiments have shown that our
proposed method is competitive to the state-of-the-art ap-
proaches. To the best of our knowledge, this is the first
attempt to learn discriminant SPD matrix logarithms in the
tangent space for the problem of discriminative learning on
the SPD manifold.

Essentially, the proposed method aims to learn more dis-
criminant SPD matrix based features by pursuing an appro-
priate transformation. If ignoring the specific discriminant
function designed on SPD matrix, learning the transforma-
tion of SPD matrix based feature for image set is equal to
learning the projection of basic image feature. According-
ly, this work can be extended to learn hierarchical repre-
sentations on image feature by coupling the existing deep
learning techniques with the objective function designed by
our proposed metric learning.
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